Table of Contact:
Pandas
Key Features
- It is a matrix that accommodates different data types in one dimension.
- Pandas is good with missing values, duplicates, and outliers.
- Fast and simple aggregation of data sets.
- Suitable for use on timestamped data.
How to install:
import pandas |
---|
This command installs the Pandas library.
You can you pandas functions and classes with the prefix ‘pandas’.
Such as
pandas.DataFrame or pandas.read_csv().
OR
import pandas as pd |
---|
It makes it more convenient to reference the functions and classes of Pandas. For example, you can type pd.read_csv() instead of pandas.read_csv().
Windows:
If you using any IDE like anaconda or python etc:
pip install pandas |
---|
OR
pip3 install pandas |
---|
Ubuntu/ linux:
sudo pip install pandas |
---|
OR
sudo pip3 install pandas |
---|
Matplotlib
Key Features
- It provides : line plots, pie charts, bar plots, line charts, etc.
- In sciences it produces charts that are ideal for publication.
- Seamlessly integrates with Jupyter Notebooks.
How to import
import matplotlib.pyplot |
---|
This command installs the pyplot module from the matplotlib. You can use matplotlib with the prefix of 'matplotlib.pyplot'.
For example:
matplotlib.pyplot.plot(x, y)
matplotlib.pyplot.show()
import matpltlib.pyplot as plt |
---|
This alias makes it more convenient to reference pyplot module. For example, you can use plt.pyplot.plot(x, y) instead of typing out matplotlib.pyplot.plot(x, y)
Windows:
If you using any IDE like anaconda or python etc:
pip install matplotlib |
---|
OR
pip3 install matplotlib |
---|
Ubuntu/ linux:
sudo pip install matplotlib |
---|
OR
sudo pip3 install matplotlib |
---|
NumPy
Key Features
- Efficient manipulation of large datasets.
- Combine arrays of any size and shape.
- The suite of functions, which can be done by linear algebra algebra operations.
- It is vital in simulations and statistics.
How to import:
import numpy
import numpy |
---|
This statemnet imports the numpy library, and you can use all the classes and functions of numpy with the keyword ‘numpy’
z = numpy.array([1,2,3,])
OR
import numpy as np
import numpy as np |
---|
This command imports the numpy library, and you can use the
functions and classes with the prefix ‘np’.
Z = np.array([1,2,3,])
It makes it more convenient. For example, you can
use np.array([1,2,3,])
Windows:
If you using any IDE like anaconda or python etc:
pip install numpy |
---|
OR
pip3 install numpy |
---|
Ubuntu/ linux:
pip install numpy |
---|
OR
pip3 install numpy |
---|
instead of typing out numpy.array([1,2,3,])
SciPy
Key Features
- Robust tools for optimization problems.
- Numerical methods of approximation for integral limits and improper limits.
- These include filters, spectral analysis, and signal transformations.
- Statistical computational environments include extensive statistical routines for hypothesis testing, probability distributions, and so forth.
How to import:
import scipy |
---|
This command import whole SciPy library and you can access its various submodules and functions.
For specific submodules or functions from SciPy:
from scipy import clusture |
---|
Windows:
If you using any IDE like anaconda or python etc:
pip install scipy |
---|
OR
pip3 install scipy |
---|
Ubuntu/ debian:
sudo apt-get install python-scipy |
---|
OR
Fedora:
sudo dnf install python-scipy |
---|
0 Comments